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1 Introduction

Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend
traditional graphs by imposing types on both nodes and links. This type information defines permissible
links among specified nodes and can be represented as a graph commonly referred to as an ontology or
schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers.
Each node type and link type may also have a list of attributes.

Figure 1: An Ontology Graph for Data from National Association of Securities Dealers (NASD). Courtesy
of David Jensen, University of Massachusetts.

To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to
be extended. This document explains briefly features commonly used to characterize graphs, and their
extensions to semantic graphs [1].

This document is divided into two sections. Section 2 contains the feature descriptions for static graphs.
Section 3 extends the features for semantic graphs that vary over time.
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Figure 2: An ontology graph for a collaboration network [4]. The size of the semantic graph is given by
the number of nodes N = 42070 = 199 + 29555 + 9200 + 3116 and the number of links M = 532429 =
20826 + 352807 + 58515 + 87794 + 12487. The size of the ontology graph is given by the number of node
types n = 4 = {Journal, Paper, Author, Domain} and the number of link types m = 5 = {Published In,
Citation, Authored, Co-Authored, Affiliation}.

2 Features for semantic graphs

1. Size of a semantic graph

(a) Number of nodes or vertices: N

(b) Number of links or edges: M

2. Size of an ontology graph

(a) Number of node types: n

(b) Number of links types: m

Fig. 2 illustrates the first two sets of features, using the collaboration network from [4].

3. Type distribution

(a) Node type distribution: {the number of nodes of type ni}/N, for each i = 1, . . . , n

(b) Link type distribution: {the number of links of type mi}/M, for each i = 1, . . . , m

Fig. 3 presents the type distributions for the example in Fig. 2.

4. Degree of a node: node degree is generally defined based on the number of neighbors of a node, that
is, on the number of nodes adjacent to it. An alternative definition is based on the number of edges
incident to the respective node. While the two definitions are equivalent for most graphs, their results
are different for multigraphs and graphs with self-loops.

(a) In-degree of node i: the number of adjacent nodes with an edge into the node (alternatively, the
number of incident edges into the node)

(b) Out-degree of node i: the number of adjacent nodes with an edge out of the node (alternatively,
the number of incident edges out of the node)

(c) Degree of node i: ki is the sum of the in-degree and the out-degree of node i

5. Average node degree or connectivity:
∑N

i=1 ki/N . For undirected graphs with no self-loops, the average
node degree is 2M/N .
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Figure 3: Type distributions for the example in Fig. 2 for (a) nodes and (b) links. The value of the node
type distribution for Paper is 29555/42070 ≈ 0.70. The value of the link type distribution for Citation is
352807/532429 ≈ 0.66.

6. Degree distribution: let d1, . . . , dD denote the D distinct values of the N node degrees. The degree
distribution is the {counts of the nodes with degree di}/N, for i = 1, . . . , D.

The degree distribution provides a measure of structural homogeneity of the graph.

7. Degree of a node based on its type

(a) Number of neighbors of type β of a node i of type α: kαβ(i)

(b) Number of neighbors of node i of type α: kα(i) =
∑

β kαβ(i)

8. Average number of neighbors per type is a feature that provides a way to analyze connectivity based
on semantic types

(a) Average degree of a node of type α: kα = 1
Nα

∑
i kα(i), where type(i)=α and Nα is the number

of nodes of type α in the semantic graph

(b) Average number of neighbors per type, re-scaled to compare different types: µα = kα/k0
α, where

k0
α is the number of node types to which a node of type α can connect

9. Standard deviation of the number of neighbors per type:

σk
α =

√
k2

α − (kα)2

k0
α

, where k2
α =

1
Nα

∑

i:type(i)=α

k2
α(i) (1)

The quantities µα and σk
α provide the expected number of connections of a node of a given type, and

its dispersion, respectively.

10. Correlation between node degrees at either ends of an edge, or assortative mixing [5]: Let ji and ki

denote the degrees of the nodes at the end of the ith edge. M continues to represent the number of
links in the semantic graph. Then,

r =
M−1

∑M
i jiki − [M−1

∑M
i ( ji+ki

2 )]2

M−1
∑M

i ( j2
i
+k2

i

2 )− [M−1
∑M

i ( ji+ki

2 )]2
. (2)

This concept extends the Pearson correlation coefficient between the node degrees for graphs. The
values for r are in the interval [-1, 1], and indicate whether high-degree nodes tend to be connected to
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other high-degree nodes. Social networks (such as co-authorship and collaboration networks) are often
assortatively mixed (r > 0), while technological and biological networks (such as the Internet, protein
interactions, neural networks) tend to be dissortative (r < 0).

11. Disparity of connected types, or correlation between different types: Some node types have connections
to many other node types, even when these nodes are not connected to many other nodes.

(a) First calculate relevant node types Y2, such that a small value indicates a large number of relevant
types, and large value indicates the dominance of a few types

Y2(i; α) =
∑

β

[
kαβ(i)
kα(i)

]2

(3)

(b) Next calculate average and dispersion over all nodes of the same type

Y 2(α) =
1

Nα

∑

i:type(i)=α

Y2(i; α); Y
2

2(α) =
1

Nα

∑

i:type(i)=α

Y 2
2 (i; α); σY

α =
√

Y
2

2(α)− (Y 2(α))2 (4)

(c) Finally, normalize both the average and the dispersion by population

Y r
2 =

∑

β∈ν(α)

[
Nβ

N

]2

and R(α) =
Y 2(α)

Y r
2

and σR
α =

σY
α

Y r
2

(5)

ν(α) is the set of node types that can be connected to a given node α as dictated by the ontology.
Nβ is the number of nodes of type β in the semantic graph.

High disparity node types are often not relevant for path finding (i.e. search). Semantically similar
nodes tend to have similar values of average number of neighbors per type, and similar values of
disparity.

12. Average path length is the average of the values in D, where D denotes the matrix of the N2 shortest
distances dij between the node pairs in the graph, i, j = 1, . . . , N :

D =




d11 d12 · · · d1N

d21 d22 · · · d2N

...
...

...
...

dN1 dN2 · · · dNN


 . (6)

For directed graphs, D is not necessarily symmetric.

For semantic graphs, type-dependent average path lengths can be calculated, in which case D is the
set of shortest distances between node pairs where either the source or the destination node is of a
particular type.

13. Diameter for all nodes and per type: the maximum value of the distances dij in the distance matrix D
in Eq. (6).

In a semantic graph, type-dependent diameters are defined similarly to the type-dependent average
path length in feature 12.

14. Breadth-first search (BFS) level distance from a node: Given a node, the breadth-first level distances
to the remaining N-1 nodes, where the BFS level distance is defined as the number of edges between
start and end nodes along the shortest path.
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Figure 4: An example ontology for which neighbors of α of type δ can never be connected to neighbors of
type β or γ. Thus, when measuring the clustering coefficient for α, δ should not be penalized for not being
connected to β or γ.

Figure 5: An example graph illustrating the closeness centrality concept. The closeness scores in decreasing
order are: F: 0.643, G: 0.643, D: 0.600, H: 0.600, A: 0.529, B: 0.529, C: 0.500, E: 0.500, I: 0.429, J: 0.310.

15. Clustering coefficient for node i:

C(i) =
Ei

ki(ki − 1)
, (7)

where ki is the number of neighbors of node i and Ei is the number of edges between the ki nodes.

The average over all nodes gives the clustering coefficient of the graph.

Within social networks, the clustering coefficient captures the common belief that a friend of a friend
is also a friend. Graphs that exhibit the small-world property (i.e. most pairs of nodes are connected
by a short path through the graph) have high clustering coefficient and low diameter (and, therefore,
short average path length).

16. Type-dependent clustering coefficient for node i of type α in a semantic graph:

C(i; α) =
Ei

E(i; α)
, (8)

where E(i; α) denotes the maximum number of links allowed by the ontology. The simple example in
Fig. 4 illustrates this concept.

17. Closeness centrality of node i: the ratio of 1 over its average geodesic (i.e., shortest) distance to all
other nodes in the graph – namely, clsi = ( 1

N−1

∑
t 6=i∈V dG(i, t))−1, where dG(i, t) is the geodesic

distance between node i and node t. A node with high closeness centrality can access all the nodes in
the graph more quickly than other nodes. Such a node has the shortest paths to the other nodes, and
can easily monitor the information flow in the graph. For example, in the graph presented in Fig. 5,
nodes F and G have the highest closeness scores.

Extension to semantic graphs is provided by the ratio of 1 over the its average distance to all nodes of
type α in the graph.
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Figure 6: An example graph illustrating the betweenness centrality concept. The betweenness scores are: H:
0.389, F: 0.231, G: 0.231, I: 0.222, D: 0.102, A: 0.023, B: 0.023, C: 0.000, E: 0.000, J: 0.000.

18. Betweenness centrality

(a) Node betweenness: beti = 1
1
2 N(N−1)

∑
s 6=i 6=t∈V

gi(s,t)
Nst

, where gi(s, t) is the number of geodesic (i.e.
shortest) paths from node s to node t that pass through node i. Nst is the total number of
geodesic paths from s to t. V is the set of nodes in the graph and N is the total number of nodes
(i.e., N = |V |).

(b) link betweenness: beti→j = 1
1
2 N(N−1)

∑
s 6=i6=j 6=t∈V

gi→j(s,t)
Nst

, where gi→j(s, t) is the number of
geodesic (i.e. shortest) paths from node s to node t that traverse the link connecting i to j.

A node or a link with a high betweenness has great influence over what flows in the network. For
example, in the graph presented in Fig. 6, node H has the highest betweenness centrality value.

For semantic graphs, these concepts are extended to the fraction of shortest paths between node pairs
that pass through a node i of type α or an edge j of type θ.

19. Relevance of node i: defined as the clustering coefficient C(i) if the links of node i are all of the same
type (i.e. count the links involving pairs of neighbors of node i). Otherwise, given by a matrix M(t1, t2)
that counts the number of links between pairs of neighbors a and b, where node a is linked to node i
via type t1 and node b is linked to node i via type t2.

Small entries in M(t1, t2) correspond to pairs of link types associated with node i that should not be
traversed in path-finding (i.e. search).

20. Relevance of a link between nodes a and b: quantifies the relevance of the relationship between a and
b by counting the proportion of neighbors they share

S(a, b) =
|I(a, b)|
|U(a, b)| , (9)

where I(a, b) = {node w|w is linked to a and b, w 6= a,w 6= b} and
U(a, b) = {node w|w is linked to a or b, w 6= a,w 6= b} = degree(a) + degree(b)− I(a,b).

Large values of S(a, b), 0 ≤ S(a, b) ≤ 1, indicate strong relationships between nodes a and b, with a
high proportion of common neighbors. Fig. 7 displays an example.

21. Connected graph: graph G is connected if every node is reachable from every other node, that is, if
every two nodes are connected by at least one link. Otherwise, G is disconnected.

22. Clique: G is a clique if each pair of nodes is connected by a link. A clique with N nodes has N(N−1)/2
undirected links.

Note: in a multigraph (see definition 26) a clique may have more than one link connecting each pair
of nodes. In addition, a multigraph may have >= N(N − 1)/2 links and not be a clique.

23. Component graph: a connected subgraph H of G is a component of G if H is not contained in any
connected subgraph of G having more nodes or links than H.
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Figure 7: Example graph illustrating the relevance of a link between two nodes given in Eq. (9), with
S(JT,TE)=0.75.

Figure 8: An example self-loop where a node connects to itself.

24. Largest (or strongly) connected component (SCC): the SCC of G is the largest subgraph in G in which
every node is reachable from every other node. Given a graph G = {V, E}, its strongly connected
component is a subgraph SCC = {V ′, E′} that (i) is connected and (ii) for all nodes u such that
u ∈ V and u /∈ V ′, there is no node v ∈ V ′ for which u has a link to v.

25. Self-loop: G has self-loops when a node can have a link to itself. For example, self-employment in
Fig. 8 would constitute a self-loop in a graph.

Self-loops are a special case of graphs that contain cycles. Depending on the application, node degree
can be calculated with or without including the self-loops.

26. Multigraph: G is a multigraph if it allows multiple (parallel) links between two nodes. Figure 9 depicts
a simple multigraph. A simple way to measure the prevalence of multiple links is to first collapse the
multiple links between each pair of nodes into a single link. Let G′ denote the resulting new graph,
and M and M ′ denote the number of edges in the original and new graphs, respectively. Then, M−M ′

M ′
measures the prevalence of multiple edges.

Figure 9: Example multigraph where multiple links – wrote, acted in, and directed – connect the actor node
Tom Hanks to the movie node That Thing You Do.

27. Edge redundancy measures the graph’s robustness to random disconnections, and can be measured
by the average number of randomly selected links that must be removed to break the graph into
disconnected components. Details on the random edge removal and subsequent calculation of the
redundancy are found in [3].
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Figure 10: The average number of communication opportunities per person, calculated over time, for the
MIT Reality Mining data [2].

28. Other features such as strength of association [3], graph spectra (eigenvalues of the adjacency matrix),
PageRank, and HITS will be considered as the project progresses.

3 Extensions to dynamic graphs

The features presented in Section 2 can easily be extended to semantic graphs that vary over time. Given
a start time, an end time, and an interval length (i.e. size of time step), the graph can be divided into
subgraphs that exist in the time intervals defined by these three parameters. The selected features are then
calculated for each of the subgraphs, resulting in a time series of features. Monitoring the evolution of
features through time can uncover temporal signatures and anomalies in the graph.

Fig. 10 was generated by calculating graph features over time on the MIT Reality Mining Data set [2]. It
shows the number of communication opportunities (i.e., calls and voice and text messages between phones
and physical proximity between Bluetooth devices) per person over time. These values were calculated using
feature 2b (i.e., counting the number of links) on the communication links between cell phones and the
proximity links between Bluetooth devices over time. The plot shows that the number of physical meetings
between participants is high during each term and falls off during breaks. In contrast, the number of calls
remains relatively constant over time and peaks during winter break, presumably because participants have
more time to call and may want to keep in touch with friends from school while physical meetings are
impossible.
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